当前位置:耀景文档网>范文大全 > 公文范文 > 2023年度电网系统论文【五篇】(精选文档)

2023年度电网系统论文【五篇】(精选文档)

时间:2023-06-30 14:35:06 公文范文 来源:网友投稿

水力发电系统由发电机、AC/DC转换、PWM逆变器、LCL滤波器组成。发电机使用异步电机,异步电机并网发电是利用电网提供以同步转速转动的旋转磁场,在转差率为负值的工况下,其磁力矩与转速方向相反,机械力下面是小编为大家整理的2023年度电网系统论文【五篇】(精选文档),供大家参考。

电网系统论文【五篇】

电网系统论文范文第1篇

水力发电系统由发电机、AC/DC转换、PWM逆变器、LCL滤波器组成。发电机使用异步电机,异步电机并网发电是利用电网提供以同步转速转动的旋转磁场,在转差率为负值的工况下,其磁力矩与转速方向相反,机械力矩方向与转速方向相同,磁力矩作负功,机械力矩作正功(转化为电能),向电网输出电能。常用作发电的一般为三相鼠笼式异步电机,三相绕线式异步电机和单相电容式异步电机也可作为发电使用,但技术性指标差。电能经PWM逆变器后变为正弦调制波,这时的电能含有大量的高次谐波,为了减少谐波污染,加入LCL滤波器。

二、电力系统谐波危害

并网系统的电能质量主要取决于输出电流的质量,为了能够给电网提供高质量的电能,并网逆变器的电流控制发挥了重要的作用,因此,对并网发电用三相逆变器研究就显的尤为重要。

由于三相PWM逆变器具有功率因数高,效率高等诸多优点,因此在可再生能源的并网发电中得到广泛应用。但是三相PWM逆变器在其开关频率及开关频率的整数倍附近,产生的高次谐波注入到电网中,会产生谐波污染,这将对电网上的其他电磁敏感的设备产生干扰。

谐波对电力系统和其它用的设备可能带来非常严重的影响,主要危害可归纳为:

在电力危害方面:

(1)使公用电网中的设备产生附加谐波损耗,降低发电、输电及用电设备的使用频率增加电网损耗。零线会由于流过大量的3次及其倍数次谐波造成零线过热,甚至引发火灾。

(2)谐波会产生额外的热效应从而引起用电设备发热,使绝缘老化,降低设备的使用寿命。

(3)谐波容易使电网与补偿电容器之间产生串联并联谐振,使谐振电流放大几倍甚至几十倍,造成过流,造成电容器以及与之相连的电抗器、电阻器的损坏。

(4)降低产生、传输和利用电能的效率。

在信号干扰方面:

(1)谐波会引起一些保护设备误动作,如继电保护的熔断器等。同时也会导致电气测量仪表计量不准确。

(2)谐波通过电磁感应和传导耦合等方式对邻近的电子设备和通信系统产生干扰,严重时会导致它们无法正常工作。

所以,减轻直至消除这些危害,对于供电和用电设备的节能降耗,乃至于对整个社会能源利用率的提高,都具有极其重要的意义。由于LCL在抑制谐波方面具有的优点,因此研究LCL滤波器具有很重要的现实意义。

三、并网逆变器矢量控制

控制电路的目的就是控制并网逆变器六个开关管的通断,产生与正弦波等效的一系列等幅不等宽的矩形脉冲波形,等效的原则是每一区间的面积相等。如果把一个正弦半波分作n等份,然后把每一等份的正弦曲线与横轴所包围的面积都用一个与此面积相等的等高矩形脉冲来代替,矩形脉冲的中点与正弦波每一等份的中点重合,而宽度是按正弦规律变化。这样,由n个等幅而不等宽的矩形脉冲所组成的波形就与正弦半周等效。同样,正弦波负半周也可用相同方法与一系列负脉冲波来等效。

为了达到控制目的,我们选用矢量控制的方法。矢量控制最初用于控制异步电机,把交流电动机等效为直流电动机控制,后来经过多年的发展,逐渐形成了一套比较完整的矢量控制理论体系。最近二十多年来由于电力电子、计算机及微电子技术的飞速发展,矢量控制技术在高性能交流驱动领域的应用已经越来越广泛。矢量控制大大简化了控制的难度,并会获得较好的控制效果,因此我们将采用矢量控制的方法对并网逆变器进行控制。

我们采用两个电流内环、一个电压外环的双闭环系统,来达到实际需要的精度和动静态性能。这种方法是取直流侧电压与给定电压比较,产生作为输入的直轴电流,取逆变器侧电感电流作为反馈,产生控制逆变器的脉冲信号。当发电机的直流电压不稳定时,通过逆变器侧电感电流的反馈,可以调节逆变器6个开关管通断时间,使其输出与电网电压幅值、相位相吻合。

四、LCL参数设计

逆变器侧是三个电阻为R、电感为L的电抗器,网侧是三个电阻为Rf、电感为Lf的电抗器,网侧电抗器和变流器侧电抗器之间是三个星形联结的电容器Cf。六个功率开关由控制电路产生的脉冲信号控制其通断,从而产生与正弦波等效的等幅矩形脉冲序列波。经逆变器形成的三相交流电经LCL滤波器滤除谐波后并入电网。

由于在LCL参数选择比较复杂,国际上也没有一种统一的设计方法,因此文章综合考虑电网侧电流最大允许脉动、逆变器开关频率和阻尼特性等要求,通过计算的方法得出一种简单有效的设计方案:通过选择逆变器侧所需要的电流纹波来设计内部电感L,通过选择在额定状态下吸收的无功功率来决定电容值,通过选择期望电流纹波减少量来设计Lf。由于逆变器开关管通常工作在高频方式,一般为15kHz,所以该滤波器属于低通滤波器,目的是滤除高频开关纹波。

通过计算得出LCL参数后,我们采用MATLAB中的SIMULINK模块进行仿真,通过反复实验后得出一个满足要求的实验结果。

五、主动阻尼控制器的设计

由于LCL滤波器是谐振电路,对系统的稳定性有很大影响,如果不采取很好的控制策略,会使电流的谐波畸变率增大。为了抑制LCL滤波器的谐振,可以采取增加滤波器阻尼的方法,但是增加无源元件,如电阻等,会造成功率损耗,降低系统的工作效率。除此之外我们还可以采取增加主动阻尼的方法,所谓主动阻尼,是指主动采取控制策略的方法,达到与被动阻尼相同的效果。

用主动阻尼的方法替代实际的谐振阻尼电阻作用,这样即使主动阻尼的阻值很大,也不会造成功率损耗,降低系统的效率。由于电压电流双闭环控制具有系统对参数变化不敏感,稳定性高的优点。采取这种控制策略与通常的双闭环不同之处在于,增加了对电容器电流的前馈控制。

结语

IEEE1547标准严格限定负载注入电网的电流总谐波畸变要小于5%,35次以上谐波的畸变率要小于0.3%。通过我们对逆变器矢量控制、LCL参数和主动阻尼器的设计,将基本达到这一要求。

参考文献

[1]魏昊,张淼,严克剑.基于空间矢量控制的PWM整流系统的研究[J].广东有色金属学报,2006,16(3).

[2]罗悦华,伍小杰,王晶鑫.三相PWM整流器及其控制策略的现状及展望[J].电气传动,2006,36(5).

[3]李时杰,李耀华.PWM整流器无电流传感器前馈控制策略的研究[J].电气传动,2006,36(12).

电网系统论文范文第2篇

配电自动化技术是服务于城乡配电网改造建设的重要技术,配电自动化包括馈线自动化和配电管理系统,通信技术是配电自动化的关键。目前,我国配电自动化进行了较多试点,由配电主站、子站和馈线终端构成的三层结构已得到普遍认可,光纤通信作为主干网的通信方式也得到共识。馈线自动化的实现也完全能够建立在光纤通信的基础上,这使得馈线终端能够快速地彼此通信,共同实现具有更高性能的馈线自动化功能。

二。配电网馈线保护的技术现状

电力系统由发电、输电和配电三部分组成。发电环节的保护集中在元件保护,其主要目的是确保发电厂发生电气故障时将设备的损失降为最小。输电网的保护集中在输电线路的保护,其首要目的是维护电网的稳定。配电环节的保护集中在馈线保护上,配电网不存在稳定问题,一般认为馈线故障的切除并不严格要求是快速的。不同的配电网对负荷供电可靠性和供电质量要求不同。许多配电网仅是考虑线路故障对售电量的影响及配电设备寿命的影响,尚未将配电网故障对电力负荷(用户)的负面影响作为配电网保护的目的。

随着我国经济的发展,电力用户用电的依赖性越来越强,供电可靠性和供电电能质量成为配电网的工作重点,而配电网馈线保护的主要作用也成为提高供电可靠性和提高电能质量,具体包括馈线故障切除、故障隔离和恢复供电。具体实现方式有以下几种:

2.1传统的电流保护

过电流保护是最基本的继电保护之一。考虑到经济原因,配电网馈线保护广泛采用电流保护。配电线路一般很短,由于配电网不存在稳定问题,为了确保电流保护动作的选择性,采用时间配合的方式实现全线路的保护。常用的方式有反时限电流保护和三段电流保护,其中反时限电流保护的时间配合特性又分为标准反时限、非常反时限、极端反时限和超反时限,参见式(1)、(2)、(3)和(4)。这类保护整定方便、配合灵活、价格便宜,同时可以包含低电压闭锁或方向闭锁,以提高可靠性;
增加重合闸功能、低周减载功能和小电流接地选线功能。

电流保护实现配电网保护的前提是将整条馈线视为一个单元。当馈线故障时,将整条线路切掉,并不考虑对非故障区域的恢复供电,这些不利于提高供电可靠性。另一方面,由于依赖时间延时实现保护的选择性,导致某些故障的切除时间偏长,影响设备寿命。

2.2重合器方式的馈线保护

实现馈线分段、增加电源点是提高供电可靠性的基础。重合器保护是将馈线故障自动限制在一个区段内的有效方式「参考文献。参见图1,重合器R位于线路首端,该馈线由A、B、C三个分段器分为四段。当AB区段内发生故障F1,重合器R动作切除故障,此后,A、B、C分段器失压后自动断开,重合器R经延时后重合,分段器A电压恢复后延时合闸。同样,分段器B电压恢复后延时合闸。当B合闸于故障后,重合器R再次跳开,当重合器第二次重合后,分段器A将再次合闸,此后B将自动闭锁在分闸位置,从而实现故障切除、故障隔离及对非故障段的恢复供电。

目前在我国城乡电网改造中仍有大量重合器得到应用,这种简单而有效的方式能够提高供电可靠性,相对于传统的电流保护有较大的优势。该方案的缺点是故障隔离的时间较长,多次重合对相关的负荷有一定影响。

2.3基于馈线自动化的馈线保护

配电自动化包括馈线自动化和配电管理系统,其中馈线自动化实现对馈线信息的采集和控制,同时也实现了馈线保护。馈线自动化的核心是通信,以通信为基础可以实现配电网全局性的数据采集与控制,从而实现配电SCADA、配电高级应用(PAS)。同时以地理信息系统(GIS)为平台实现了配电网的设备管理、图资管理,而SCADA、GIS和PAS的一体化则促使配电自动化成为提供配电网保护与监控、配电网管理的全方位自动化运行管理系统。参见图2所示系统,这种馈线自动化的基本原理如下:当在开关S1和开关S2之间发生故障(非单相接地),线路出口保护使断路器B1动作,将故障线路切除,装设在S1处的FTU检测到故障电流而装设在开关S2处的FTU没有故障电流流过,此时自动化系统将确认该故障发生在S1与S2之间,遥控跳开S1和S2实现故障隔离并遥控合上线路出口的断路器,最后合上联络开关S3完成向非故障区域的恢复供电。

这种基于通信的馈线自动化方案以集中控制为核心,综合了电流保护、RTU遥控及重合闸的多种方式,能够快速切除故障,在几秒到几十秒的时间内实现故障隔离,在几十秒到几分钟内实现恢复供电。该方案是目前配网自动化的主流方案,能够将馈线保护集成于一体化的配电网监控系统中,从故障切除、故障隔离、恢复供电方面都有效地提高了供电可靠性。同时,在整个配电自动化中,可以加装电能质量监测和补偿装置,从而在全局上实现改善电能质量的控制。

三。馈线保护的发展趋势

目前,配电自动化中的馈线自动化较好地实现了馈线保护功能。但是随着配电自动化技术的发展及实践,对配电网保护的目的也要悄然发生变化。最初的配电网保护是以低成本的电流保护切除馈线故障,随着对供电可靠性要求的提高,又出现以低成本的重合器方式实现故障隔离、恢复供电,随着配电自动化的实施,馈线保护体现为基于远方通信的集中控制式的馈线自动化方式。在配电自动化的基础上,配电网通信得到充分重视,成本自动化的核心。目前国内的主流通信方式是光纤通信,具体分为光纤环网和光纤以太网。建立在光纤通信基础上的馈线保护的实现由以下三部分组成:

1)电流保护切除故障;

2)集中式的配电主站或子站遥控FTU实现故障隔离;

3)集中式的配电主站或子站遥控FTU实现向非故障区域的恢复供电。

这种实现方式实质上是在自动装置无选择性动作后的恢复供电。如果能够解决馈线故障时保护动作的选择性,就可以大大提高馈线保护的性能,从而一次性地实现故障切除与故障隔离。这需要馈线上的多个保护装置利用快速通信协同动作,共同实现有选择性的故障隔离,这就是馈线系统保护的基本思想。

四。馈线系统保护基本原理

4.1基本原理

馈线系统保护实现的前提条件如下:

1)快速通信;

2)控制对象是断路器;

3)终端是保护装置,而非TTU.

在高压线路保护中,高频保护、电流差动保护都是依靠快速通信实现的主保护,馈线系统保护是在多于两个装置之间通信的基础上实现的区域性保护。基本原理如下:

参见图3所示典型系统,该系统采用断路器作为分段开关,如图A、B、C、D、E、F.对于变电站M,手拉手的线路为A至D之间的部分。变电站N则对应于C至F之间的部分。N侧的馈线系统保护则控制开关A、B、C、D的保护单元UR1至UR7组成。

当线路故障F1发生在BC区段,开关A、B处将流过故障电流,开关C处无故障电流。但出现低电压。此时系统保护将执行步骤:

Step1:保护起动,UR1、UR2、UR3分别起动;

Step2:保护计算故障区段信息;

Step3:相邻保护之间通信;

Step4:UR2、UR3动作切除故障;

Step5:UR2重合。如重合成功,转至Step9;

Step6:UR2重合于故障,再跳开;

Step7:UR3在T内未测得电压恢复,通知UR4合闸;

Step8:UR4合闸,恢复CD段供电,转至Step10;

Step9:UR3在T时间内测得电压恢复,UR3重合;

Step10:故障隔离,恢复供电结束。

4.2故障区段信息

定义故障区段信息如下:

逻辑1:表示保护单元测量到故障电流,

逻辑0:表示保护单元未测量到故障电流,但测量到低电压。

当故障发生后,系统保护各单元向相邻保护单元交换故障区段,对于一个保护单元,当本身的故障区段信息与收到的故障区段信息的异或为1时,出口跳闸。

为了确保故障区段信息识别的正确性,在进行逻辑1的判断时,可以增加低压闭锁及功率方向闭锁。

4.3系统保护动作速度及其后备保护

为了确保馈线保护的可靠性,在馈线的首端UR1处设限时电流保护,建议整定时间内0.2秒,即要求馈线系统保护在200ms内完成故障隔离。

在保护动作时间上,系统保护能够在20ms内识别出故障区段信息,并起动通信。光纤通信速度很快,考虑到重发多帧信息,相邻保护单元之间的通信应在30ms内完成。断路器动作时间为40ms~100ms.这样,只要通信环节理想即可实现快速保护。

4.4馈线系统保护的应用前景

馈线系统保护在很大程度上沿续了高压线路纵联保护的基本原则。由于配电网的通信条件很可能十分理想。在此基础之上实现的馈线保护功能的性能大大提高。馈线系统保护利用通信实现了保护的选择性,将故障识别、故障隔离、重合闸、恢复故障一次性完成,具有以下优点:

(1)快速处理故障,不需多次重合;

(2)快速切除故障,提高了电动机类负荷的电能质量;

(3)直接将故障隔离在故障区段,不影响非故障区段;

(4)功能完成下放到馈线保护装置,无需配电主站、子站配合。

四。系统保护展望

继电保护的发展经历了电磁型、晶体管型、集成电路型和微机型。微机保护在拥有很强的计算能力的同时,也具有很强的通信能力。通信技术,尤其是快速通信技术的发展和普及,也推动了继电保护的发展。系统保护就是基于快速通信的由多个位于不同位置的保护装置共同构成的区域行广义保护。

电流保护、距离保护及主设备保护都是采集就地信息,利用局部电气量完成故障的就地切除。线路纵联保护则是利用通信完成两点之间的故障信息交换,进行处于异地的两个装置协同动作。近年来出现的分布式母差保护则是利用快速的通信网络实现多个装置之间的快速协同动作如果由位于广域电网的不同变电站的保护装置共同构成协同保护则很可能将继电保护的应用范围提高到一个新的层次。这种协同保护不仅可以改进保护间的配合,共同实现性能更理想的保护,而且可以演生于基于继电保护相角测量的稳定监控协系统,基于继电保护的高精度多端故障测距以及基于继电保护的电力系统动态模型及动态过程分析等应用领域。目前,在输电网中已经出现了基于GPS的动态稳定系统和分散式行波测距系统。在配电网,伴随贼配电自动化的开展。配电网馈线系统保护有可能率先得到应用。

电网系统论文范文第3篇

有线电视网络系统干线传输方式技术有:同轴电缆传输、光缆传输、微波传输和混合传输(光纤-同轴混合网、微波-同轴网、光纤-微波-同轴网)。

(1)同轴电缆传输系统主要包含同轴电缆网、干线系统放大器间隔配置、放大器级连等;
附属设备包括用于干线分路的过电型分支器、分配器等。同轴电缆由内是用介质使内外导体绝缘并且保持轴心重合的电缆,由内导体、绝缘体、外导体和护套四部分组成。通过结构可以分为封闭竹节型、藕芯型以及物理发泡聚乙烯绝缘型三种类型。同轴电缆开始为实芯聚乙烯绝缘同轴电缆,后来发展为化学发泡聚乙烯绝缘同轴电缆,纵孔聚乙烯同轴电缆,现在多采用物理发泡聚乙烯型绝缘电缆。同轴电缆特性阻抗一般为75Ω,电缆衰减特性与信号的频率、电缆粗细、长度有关,低频信号、细芯的电缆衰减量大,因为衰减量与电缆的长度成正比,用干线放大器来补偿电缆对信号电平进行补偿,使干线能够远距离传输。温度升高,衰减量升高,温度系数约为0.2%/℃。同轴电缆信号传输距离越远,级连越大,系统指标下降越多,系统维护就比较困难,服务水平就会下降。

(2)光缆传输系统是由光缆、光源发射机、光线放大器、和光线接收器组成。从切面看,光缆包括导电线芯、光纤、加强的构件、还有保护层四部分。光纤按电磁场分布可分为单模光纤和多模光纤,单模光纤的工作带宽较宽,有线电视多采用单模光纤。1970年,在美国首先发明出来20dB/km光纤;
1989年在美国开始出现有线电视光纤传输;
1992年我国开始出现电视信号光纤传输。光缆传输技术具有损耗小(1310nm:0.4dB/km,1550nm:0.25dB/km),可以实现电视信号的长距离传送,保证电视信号质量完好。光纤频带比较宽,在最低损耗区的频带宽度数值为30000GHz,由于单个光源占用的带宽比较小,采用相干光通信技术,可以在30000GHz范围内容纳上百万个频道,使有线电视信号能够均匀地传输到各个节点。光纤传输只传输光,不导电,不受电磁场影响,所以抗干扰能力强。

(3)微波传输系统是由微波发射系统和微波接收系统组成,微波发射系统有微波发射机、电缆、合成器、还有发射天线等,接收系统有微波接收天线、供电器、变频器等。微波传输场合有国家微波干线的大微波、卫星、单路与多路FM(调频)微波、AM(调幅)微波、多路微波分配系统MMDS。微波传输优点有:频带宽,空间传输2500-2700MHz,接收分配111-750MHz;
传输质量高,稳定性强,适应性和灵活性强。微波传输缺点是发射与接收应在视距范围内进行,信号怕遮挡,易受干扰,反射出重影等。

(4)混合传输比如光纤同轴混合网-HFC,它是由光纤作为干线、同轴电缆作为分配网,构成光纤同轴混合网(HFC)。HFC具有光纤和电缆共同的优良特性,它们通过有效的结合,使有信号能够高效高质的传输、分配。在双向有线电视中,由前端向用户终端传送的信号叫下行信号或正向通路信号;
信号从用户端向前端传送的通路成为反向通路或上行通路。HFC采用频分复用的技术,将5-1000MHz的频段分为上行通道和下行通道:5-65MHz为上行通道,可作为非广播业务,为了提高抗干扰能力,采用QPSK(或16QAM)调制。87-1000MHz为下行通道87-550MHz,全部用于模拟电视广播;
550-750MHz为下行数字通信信道。

2用户分配系统

用户分配系统主要由双向分配放大器、同轴电缆、分支分配器、用户终端组成。分配方式有串接分支链方式、分配-分配方式、分支-分支方式、分配-分支方式、分配-分支-分配方式。双向用户分配放大器采用双模块功率倍增型或双模块推挽型,将信号放大到所需要的电平,通常用户电平取70dB,这是有线电视网络系统中唯一需要高电平工作的地方。双向分配放大器主要功能是对下行信号进行均匀的功率分配,分成几路,对上行信号进行汇集。同轴电缆采用的是物理发泡的同轴电缆。分支器与分配器的连接采用-5电缆。放大器与分配器连接电缆比较长,采用-7或-9电缆。还有为了降低回传通道的噪声影响,需要选用四屏蔽的电缆。终端分支器是连接用户终端与分支线的装置,它是串联在分支线中,把信号能量的一部分分给用户。分支器是由一个主路输入端(IN),一个主路输出端(OUT)和若干个分支输出端(BR)组成。分支器还要汇集主路输出端和分支输出端的回传信号。常用的分支器有一分支器、二分支器、四分支器、六分支器等。

电网系统论文范文第4篇

在电力企业中通常会将生产控制系统与信息管理系统分隔开来,通过这种方法来避免外来因素对生产系统造成严重损害。在生产控制系统中其风险多来自于生产设备与系统的故障,还有可能存在内部人员的破坏的风险。管理网络中的常见风险则有系统合法或者非法用户造成的危害、组建系统的过程中带来的威胁、来自于物理环境的威胁。这些威胁中常见的有系统与软件存在漏洞、合法用户的不正确操作、设备故障、数据误用、数据丢失、行为抵赖、内部或者外部人员的攻击、物理破坏(各种自然灾害或者其他不可抗力带来的危害)、各种木马和病毒等。这些风险造成的后果通常是数据丢失或数据错误,从而大大的降低了数据的可用性。网络中的链接中断、被入侵、感染病毒、假冒他人言沦等风险都会大大降低数据的完整性与保密性。正是由于这许多风险,所以必须加强网络安全的建设。

二、增强电力系统网络安全的策略

(一)物理安全

计算机网络的物理安全指的是对计算机硬件设备、计算机系统、网络服务器、打印机等硬件的安全防护,同时还包括了对通信链路等各种连接设备进行保护,避免被人为的破坏和各种自然灾害带来的损失。在物理安全中海需要为各种硬件设备提供一个良好的电磁兼容工作环境。计算机系统在工作时,系统的显示屏、机壳缝隙、键盘、连接电缆和接口等处会发生信息的电磁泄漏,而电磁泄漏也会泄漏机密。所以在物理安全策略中如何抑制与防止电磁泄漏是一个十分重要的问题。目前主要的措施有:第一种是对计算机设备内部产生和运行串行数据信息的部件、线路和区域采取电磁辐射发射抑制措施和传导发射滤波措施,并视需要在此基础上对整机采取整体电磁屏蔽措施,减小全部或部分频段信号的传导和辐射发射,对电源线和信号传输线则采取接口滤波和线路屏蔽等技术措施,最大限度的达到抑制电磁信息泄漏源发射的目的;
第二种是使用电磁屏蔽技术,将涉密计算机设备或系统放置在全封闭的电磁屏蔽室内;
第三是使用噪声干扰法,即在信道上增加噪声,从而降低窃收系统的信噪比,使其难以将泄漏信息还原。

(二)进行访问控制

网络安全的目的是将企业信息资源分层次和等级进行保护,而访问控制的主要任务就是保证网络资源不被非法使用和非常访问。访问控制是进行网络安全防范和与保护网络的主要手段。它是对网络安全进行保护的核心策略。访问控制手段有多种,其中主要的有以下的几种手段。第一种是入网控制。它是第一层的网络访问控制,其重要性不言而喻。入网访问控制是对用户可以登录的时间和允许他们可以登入的工作站进行控制。第二种是网络权限控制,其主要目的是防止各种可能出现的网络非法操作,它的做法是根据用户组与用户的身份赋予相应的权限,并对用户与用户组可以访问哪些资源和进行什么操作进行规定限制。第三种是目录级安全控制。该种控制指的是对用户在目录一级的文件和子目录的权限进行控制,例如用户的读权限、写权限等。第四种是属性安全控制。属性安全控制指的是网络管理员根据需求为给各种文件和目录所指定相应的安全访问属性。第五种是服务器安全控制。该种控制指的是为服务器设置口令、登录时间限制、非法访问者检测等,以防止非法用户对信息的修改和破坏等。最后的是防火墙控制。防火墙控制,在内部网与外部网的节点上安装防火墙对一些危险的数据信息进行过滤已形成一个较为安全的网络环境。

(三)对数据进行加密

数据加密的目的是为了隐蔽和保护具有一定密级的信息。对于网络上的数据加密方法常用的有以下三种,分别是链路加密、端点加密和节点加密。链路加密是传输数据仅在物理层前的数据链路层进行加密,它必须要求节点本身是安全的,否则其加密也相当于没有加密;
端到端加密允许数据在从源点到终点的传输过程中始终以密文形式存在,与链路加密和节点加密相比更可靠,更容易设计、实现和维护,它的目的是对源端用户到目的端用户的数据提供保护;
节点加密的目的是对源节点到目的节点之间的传输链路提供保护。而各个电力企业应该根据其自身的需求去选择合适的加密算法。

(四)制定完善的管理制度

在进行网络安全管理的过程中,除了拥有良好的技术方法和措施,还必须拥有一个完善的管理制度。如果没有一个晚上的管理制度,再好的措施在执行时都会出现不同程度的问题,而对于网络安全来说是容不得一点失误的,任何失误都有可能为网络安全带来不确定的影响。所以还必须做到如下几点:对安全管理等级和完全管理范围进行明确的划分;
制定出完善的网络操作使用规程和人员出入机房管理制度;
最后是制定出网络系统的维护制度和应急措施等。

电网系统论文范文第5篇

电力系统中利用计算机网络技术,有效的扩大了管理的范围,提高了工作效率,但随之而来所带来的安全问题也日益严重。由于病毒技术的快速发展,防火墙的完善,使电力系统网络极易受到攻击,导致企业机密出现泄露。特别是部分电力企业中局域网极易出现堵塞现象,从而导致工作效率降低,再加之操作系统漏洞及上网管理不严,极易给攻击者留下后患,各类远程攻击及病毒入侵时常发生。

2计算机网络在电力系统的应用意义

电力系统计算机网络技术的应用,为企业管理人员带来了较大的便利。企业管理者只需要在本部就可实现对各地项目部财务、工程进度及工程质量等信息的了解,及时获取各地项目部的资料,与其他管理人员通过网络对项目问题进行分析和决策。同时计算机网络技术的应用,对当前电网建设发挥着极为关键的作用,其可以利用计算机网络将各地电网设施进行连接,使其成为一个整体,而且还可以将各地分散的员工有效的连接成为一个整体,为管理带来了较大的便利。这样管理范围进一步缩小,利用计算机网络这个平台,可以有效的将企业与员工有效的联系起来,充分的调动起每一位员的工作积极性,使企业管理者也可以通过这个平台更好的了解员工的基本情况,科学合理的做出更项重要决策。可以说在电力企业发展过程中,计算机网络技术作为其现代化管理的重要手段之一,成为企业发展的重要帮手。

3电力系统信息安全防护应对策略

3.1做好电力系统安全风险的评估在当前电力企业信息化建设过程中,为了更好的发挥出计算机网络技术的优势,则需要做好安全状况评估工作,聘请权威信息安全咨询机构,同时组织企业内部信息人员和专业人员参与,从而对企业信息安全风险进行全面的评估,及时发现企业信息化建设过程中存在的问题,并制定科学合理的策略,建立健全企业信息安全系统,在企业信息化建设过程中尽量应用已成成熟的技术和产品,确保信息安全系统的安全和稳定。

3.2采用信息安全新技术,建立信息安全防护体系电力系统企业信息安全面临的问题很多,应该根据安全需求的轻重缓急,解决相关安全问题,根据信息安全技术的成熟度进行综合分析判断,采取分步实施。技术成熟的,能快速见效的电力安全系统先行实施。

3.3计算机病毒防范目前防病毒软件主要分为单机版和网络版两种。随着网络技术的快速发展,网络病毒的危害越来越大,因此,必须将电力系统内各台计算机加装防病毒软件,并且要及时更新防病毒软件的病毒库版本,建议采用单机版、网络版防病毒软件及其他防护手段相结合的综合病毒防范体系。

3.4优化安全设备配置策略通过信息检测、攻击检测、网络安全性分析和操作系统安全性分析等一系列配置,对黑客进行监控。利用防火墙可以阻断非法的数据包,屏蔽针对网络的非法攻击,阻断黑客入侵。一般情况下,防火墙设置会导致信息传输的明显延时。因此,在需要考虑实时性要求的电力系统,建议采用实时系统专用的防火墙组件,以降低电力系统通用防火墙软件延时带来的影响。

3.5监视网络流量和进行非授权使用检测通过对网络流量采样.来实时地监视网络流量和进行非授权使用检测。同时,可以通过封锁网络访问或终止非法对话来主动响应非法活动。

4电力系统计算机网络的维护

4.1维护工作内容一是保证设备工作条件,包括供电条件和环境条件等;
二是对系统故障进行判断和处理,根据故障现象和告警指示,利用网管及各种测试工具进行故障定位,找出故障原因,在最短时间内排除故障;
三是通常采用集中维护方式,将维护人员和必要的维护仪表集中在一个主要站;
四是经常检查交换机与路由器中的端口状态,尤其需要关注端口差错统计信息,对于出错包特别多的端口,应该检查其是交换机或路由器本身的、链路的原因,还是接入设备的原因;
五是链路若是光缆,则主要检查现有衰耗和投运时的衰耗差,链路是网线则用专用仪器进行现场测试,光纤不允许小角度弯折,更不能出现直角;
六是网管监控系统和本地维护终端用的计算机是专用设备,禁止挪用,以免病毒侵害。

4.2对维护人员的要求一是对运行中的网络设备在进行变更设置的操作时,必须有两人同时在场方可进行,一人操作,一人监护,并做好如何在操作失败而导致网络设备异常的情况下的处理预案,履行必要手续;
二是处理光接口信号时,不得将光发送器的尾纤端面或上面活动连接器的端面对着眼睛,并注意尾纤端面和连接器的清洁;
三是熟练掌握所维护的设备的基本操作;
四是做好设备的日常巡视工作。

5结束语

推荐访问:电网 论文 系统 电网系统论文【五篇】 电网系统论文(精选5篇) 电网技术论文

版权所有:耀景文档网 2012-2024 未经授权禁止复制或建立镜像[耀景文档网]所有资源完全免费共享

Powered by 耀景文档网 © All Rights Reserved.。备案号:鲁ICP备12016148号-1